An NE/SQP Method for the Bounded Nonlinear Complementarity Problem
نویسندگان
چکیده
منابع مشابه
An NE/SQP Method for the Bounded Nonlinear Complementarity Problem
NE/SQP is a recent algorithm tha t has proven quite effective for solving the pure and mixed forms of the nonlinear complementarity problem (NCP). NE/SQP is robust in the sense that i ts direction-finding subproblems are always solvable; in addition, the convergence rate of this method is Q-quadratic. In this paper we consider a generalized version of NE/SQP proposed by Pang and Qi, that is sui...
متن کاملA power penalty method for a nonlinear parabolic complementarity problem
In this paper we present a penalty method for solving a complementarity problem involving 2nd-order nonlinear parabolic differential operators. In this work we first rewrite the complementarity problem as a nonlinear variational inequality. Then, we define a nonlinear parabolic partial differential equation (PDE) approximating the variational inequality using a power penalty term with a penalty...
متن کاملA New Interior Point Method for Nonlinear Complementarity Problem
In this paper, we present a new method of interior point to solve a class of the nonlinear problem of complementarity inspired from a study introduced by Censor et al. This method is regarded as reduction from the variational inequalities problem to a particular case. Under less restrictive constraints, we are able to generate a sequence of nonnegative elements and we establish the global conve...
متن کاملOn the Nonlinear Complementarity Problem
Variational inequality theory besides being elegant, exciting and rich, also provides us a unified and natural framework to study a large class of linear and nonlinear problems arising in mathematical and engineering sciences. Equally important is the area of operations research known as complementarity theory, which has received much attention during the last twenty years. It has been shown by...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 1998
ISSN: 0022-3239,1573-2878
DOI: 10.1023/a:1022643104274